Year 5 Summer-Themed
 Maths Activity Booklet

Answers

Place Value Code Breaker

－	V	㴆敫	82	θ		（2）	5		0
2	4	8	6	1	0	5	9	3	7

| In the number | 消奥 | \square | what is the value of the |
| :--- | :--- | :--- | :--- | :--- | :--- |

Answer：＿ 5000

| In the number | 9 | | what is the value of the |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Answer：－ $\mathbf{0 . 6}$ or $\frac{6}{10}$

| In the number | \square | \square | what is the value of the \bigcirc ？ |
| :--- | :--- | :--- | :--- | :--- |

Answer：$\quad 0.007$ or $\frac{7}{\text { 1000 }}$

What is the number	消㞔	P	es	θ	3	rounded to the nearest 10？

Answer： $\mathbf{8 3 6 2 0}$

What is the number	σ	sem	B	5	5	rounded to the nearest 100？

Answer：＿ 20300

What is the number	\square	$母$	σ	written in Roman numerals？

Answer：CXLII

Calculations Code Breaker

Solve the calculations and use the code breaker to spell out a summer-themed joke. The joke will read down the tables.

A	B	C	D	E	F	G	H	I	J	K	L	M
6	15	21	5	13	24	18	7	12	1	25	19	9

\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
22	16	11	26	2	17	20	3	10	8	14	23	4

	Answer	Letter
$64 \div 8$	$\mathbf{8}$	\mathbf{W}
$63 \div 9$	$\mathbf{7}$	\mathbf{H}
$1300 \div 100$	$\mathbf{1 3}$	\mathbf{E}
0.02×100	$\mathbf{2}$	\mathbf{R}
1.3×10	$\mathbf{1 3}$	\mathbf{E}

	Answer	Letter
$55 \div 11$	$\mathbf{5}$	\mathbf{D}
$160 \div 10$	$\mathbf{1 6}$	$\mathbf{0}$

	Answer	Letter
0.24×100	$\mathbf{2 4}$	\mathbf{F}
$144 \div 12$	$\mathbf{1 2}$	\mathbf{I}
$1700 \div 100$	$\mathbf{1 7}$	\mathbf{S}
$56 \div 8$	$\mathbf{7}$	\mathbf{H}

	Answer	Letter
1.8×10	$\mathbf{1 8}$	\mathbf{G}
$1600 \div 100$	$\mathbf{1 6}$	$\mathbf{0}$

	Answer	Letter
4×4	$\mathbf{1 6}$	$\mathbf{0}$
2.2×10	$\mathbf{2 2}$	\mathbf{N}

Colour by Calculation

Use the key to colour the summer-themed picture.

Grey:	Red:	Orange:	Yellow:	Green:	Light Blue:	Dark Blue:	White:
0	$1-100$	$101-200$	$201-300$	$301-400$	$401-500$	$501-600$	$601-700$

Number Cross

Use the summer－themed code to complete the number cross．Use written methods of multiplication to solve the number cross．

Across

1． $75 \times 4=\mathbf{3 0 0}$
3． $43 \times 6=\mathbf{2 5 8}$
5． $72 \times 97=\mathbf{6 9 8 4}$
7． $82 \times 2=164$
8． $30 \times 11=330$
9． $83 \times 21=1743$
$11.66 \times 13=858$

Down

1． $45 \times 7=\mathbf{3 1 5}$
2． $61 \times 44=2684$
3． $80 \times 3=\mathbf{2 4 0}$
4． $93 \times 28=\mathbf{2 6 0 4}$
6． $89 \times 9=801$
7． $61 \times 3=183$
10． $73 \times 56=4088$

\square	$\sqrt{2}$	溇采	ces	θ	监	0		P	0
2	4	8	6	1	0	5	9	3	7

Summertime Equivalent Fractions Maths Mosaic

Simplify each fraction to its lowest term to reveal the hidden picture. Each answer has a special colour.

| yellow $=\frac{2}{3}$ | black $=\frac{3}{4}$ | pink $=\frac{2}{5}$ | green $=\frac{5}{6}$ |
| :--- | :--- | :--- | :--- |\quad blue $=\frac{1}{3}$

$\frac{2}{6}$	$\frac{3}{9}$	$\frac{4}{6}$	$\frac{8}{12}$	$\frac{12}{18}$	$\frac{10}{15}$	$\frac{6}{9}$	$\frac{5}{15}$	$\frac{6}{18}$
$\frac{4}{12}$	$\frac{14}{21}$	$\frac{18}{27}$	$\frac{22}{33}$	$\frac{20}{30}$	$\frac{16}{24}$	$\frac{4}{6}$	$\frac{8}{12}$	$\frac{7}{21}$
$\frac{6}{8}$	$\frac{30}{40}$	$\frac{9}{12}$	$\frac{27}{36}$	$\frac{12}{16}$	$\frac{24}{32}$	$\frac{15}{20}$	$\frac{21}{28}$	$\frac{18}{24}$
$\frac{6}{9}$	$\frac{33}{44}$	$\frac{36}{48}$	$\frac{39}{52}$	$\frac{14}{21}$	$\frac{42}{56}$	$\frac{45}{60}$	$\frac{48}{64}$	$\frac{18}{27}$
$\frac{12}{18}$	$\frac{10}{15}$	$\frac{51}{68}$	$\frac{22}{33}$	$\frac{20}{30}$	$\frac{16}{24}$	$\frac{54}{72}$	$\frac{4}{6}$	$\frac{8}{12}$
$\frac{14}{21}$	$\frac{18}{27}$	$\frac{22}{33}$	$\frac{20}{30}$	$\frac{16}{24}$	$\frac{4}{6}$	$\frac{8}{12}$	$\frac{12}{18}$	$\frac{10}{15}$
$\frac{4}{6}$	$\frac{8}{12}$	$\frac{12}{18}$	$\frac{10}{15}$	$\frac{6}{9}$	$\frac{14}{21}$	$\frac{18}{27}$	$\frac{22}{33}$	$\frac{20}{30}$
$\frac{22}{33}$	$\frac{20}{30}$	$\frac{4}{10}$	$\frac{6}{15}$	$\frac{8}{20}$	$\frac{10}{25}$	$\frac{12}{30}$	$\frac{4}{6}$	$\frac{8}{12}$
$\frac{10}{12}$	$\frac{14}{21}$	$\frac{18}{27}$	$\frac{14}{35}$	$\frac{16}{40}$	$\frac{18}{45}$	$\frac{6}{9}$	$\frac{14}{21}$	$\frac{35}{42}$
$\frac{15}{18}$	$\frac{20}{24}$	$\frac{4}{6}$	$\frac{8}{12}$	$\frac{12}{18}$	$\frac{10}{15}$	$\frac{6}{9}$	$\frac{25}{30}$	$\frac{30}{36}$

Summer Number Puzzles

I collect some shells on the beach.
I multiply the number of shells by 5 .
I then subtract 15 ,
multiply by 7,
and divide by 2.
I end with the number 735.
How many shells did I collect? 45 shells

I practise cartwheels on the sand.
I multiply the number of cartwheels by 8.
I then subtract 132,
multiply by 10,
and divide by 4.
I end with the number 30 .
How many cartwheels did I do?
18 cartwheels

I decorate my sandcastle with flags.
I multiply the number of flags by 7 .
I then add 78,
multiply by 4,
and divide by 3.
I end with the number 300.
How many flags did I use to decorate my sandcastle? 21 flags

Pirate Flags

These flags have been designed on cm square grids.
-What is the area of each flag?
-What is the perimeter of each flag?
Colour in the flags according to the fractions.

Red $=\frac{1}{4} 8.5$ squares
Green $=\frac{1}{8} 4.25$ squares
Blue $=\frac{1}{2} 17$ squares
White $=\frac{1}{8} 4.25$ squares
Area $=$ Perimeter $=1$

Coordinate and Reflection Mystery Picture

Plot these shapes onto the coordinate grid and join them together with straight lines. Next, reflect the shapes over the y-axis to reveal a mystery picture.

y-axis

1. $(-7,3),(-5,3),(-5,5),(-4,4),(-4,2),(-3,1),(-2,1),(-2,2),(-1,2),(-1,1),(0,1)$, $(0,-4),(-1,-4),(-3,-3),(-4,-2),(-4,-1),(-3,0),(-5,2),(-6,2),(-7,3)$
2. $(-4,-1),(-6,-1),(-6,-2),(-4,-1)$
3. $(-4,-2),(-6,-3),(-5,-4),(-4,-2)$
4. $(-3,-3),(-3,-5),(-2,-5),(-3,-3)$

The mystery picture is
a crab

Summer Holiday Temperatures Line Graph

Jasper went on his summer holiday to Greece. Sonia went on her summer holiday to Cornwall. Here is a line graph showing the highest daily temperature on each day of their summer holidays.

Use the graph to answer the questions.

A Line Graph to Show the Highest Daily Temperatures in Greece and Cornwall

1. What was the temperature on day 4 of Jasper's holiday? $\mathbf{2 0}^{\circ} \mathrm{C}$	2. What was the temperature on day 1 on Sonia's holiday? $15^{\circ} \mathbf{C}$
3. What was the difference in temperature between Greece and Cornwall on day 3 ? $5^{\circ} \mathrm{C}$	4. How much warmer was it in Greece than Cornwall on day 7 ? $3^{\circ} \mathrm{C}$
5. On which day was the temperature of Sonia's holiday $21^{\circ} \mathrm{C}$? Day $\mathbf{6}$	6. On which day did the temperature in Greece decrease? Day $\mathbf{4}$

